
Tools and toolchain SIG

1. Summary
Tools and toolchains are an important part of building any operating system. They have a big impact on
performance, compatibility and developer friendliness.

It is therefore important for OpenHarmony to make the right decisions about tools and toolchains,
making a SIG necessary.

2. Motivation

2.1 Goals
1. Determine the best tool and toolchain options currently available (see 3. for examples)

2. Optimize the chosen components for OpenHarmony – set reasonable defaults with
OpenHarmony triplets, make sure OpenHarmony is a visible target in IDEs, etc.

3. Push modifications to toolchain projects like LLVM and gcc upstream – any local patches to
toolchain components should be temporary. This includes helping other teams like Harmony
(non-Open) upstream their changes, if any/if needed.

4. Keep monitoring the Open Source world for new versions (the toolchain should track upstream
releases – they usually come with better performance and compliance with newer language
standards) and entirely new projects (including, but not limited to, Huawei’s OpenArk
compilers) that could improve OpenHarmony tools and toolchains, update OpenHarmony tools
and toolchains in a timely manner

5. Provide expertise/assistance to developers running into toolchain problems (compiler bugs etc.)

6. Make sure people trying to build OpenHarmony and/or develop OpenHarmony apps can easily
install the needed toolchain components regardless of their work environment

7. Identify and adapt debugging, profiling, and code quality tools and sanitizers that can be useful
for the OpenHarmony ecosystem. If a new tool needs to be developed, try to develop it inside
an upstream project to bring in external developers/maintainers.

8. Decide on components and architecture of the OpenHarmony SDK for hardware makers and
application/game developers

9. Avoid host tool contamination – help make sure the OpenHarmony toolchain is used instead of
potentially equivalent host tools that may come with a different set of bugs

2.2 Non-Goals
1. Writing new toolchain components from scratch

2. Forking toolchain components (if they can’t be avoided altogether, any forks with extra
OpenHarmony support should be temporary until patches are accepted upstream)

3. Proposal
The Tools and toolchain SIG is launched, and starts looking into the following questions (more will be
added later as OpenHarmony progresses):

1. gcc or clang?

2. libgcc or compiler-rt?

3. libstdc++ or libc++?

4. Do we want to include (optional) support for additional programming languages, such as
Java, C#, Go, Rust, Swift? If so, which languages and which implementations thereof?
Which runtimes (if any) go into the core OS, which are provided as optional components
inside the SDK?

5. libc: Currently Linux and LiteOS-A use Musl, Zephyr uses a newlib fork, FreeRTOS is
typically used with newlib. There are good reasons to use different libcs here (newlib
doesn’t support dynamic linking, which is very important for higher end systems, while
musl doesn’t support MMU-less systems), but there may be some things we can do to
improve compatibility between OpenHarmony on top of different kernels, and some ways to
optimize both worlds while reducing maintenance work (e.g. unify the implementations of
some functions in both libcs, or even bring in more optimized versions of some routines
from other libc implementations)

6. Which debugging tools, profilers, code quality tools, sanitizers etc. do we need/want on
OpenHarmony?

7. What IDE or IDEs, if any, do we want to modify for improved OpenHarmony support?
How can we best support IDE users and traditional tool users alike?

8. Do we assemble the toolchain (not its components; that is beyond the scope) from scratch or
do we base our work on an existing project (e.g. OpenEmbedded/Yocto, Buildroot, a Linux
distribution’s packaging, ...)

Once decisions are made, the SIG builds and maintains the tools and toolchains used in OpenHarmony
and the SDK (tools, library headers, etc. and optional IDE(s) as separate modules).

The toolchain is provided in binary form and in source form with a simple build script that includes all
configurations etc. used for the official build.

If a tool bug is reported to the SIG, it responds by fixing the bug or passing the bug report on to the
corresponding upstream project with all needed information (possibly adding details like a fully

reduced test case for a compiler bug to the original report), and by providing a workaround if the
problem can’t be fixed properly in a timely manner.

Patches for bug fixes and optimizations should always go upstream in a timely manner. Local patches
to upstream components should be temporary at most. This minimizes overhead and maximizes reuse.

3.1 User Stories

1 Typical app/game developer

A developer wants to build an app that runs on OpenHarmony. Thanks to the work of the
SIG, he can install the needed SDK/crosscompiler easily (ideally it is available in his Linux
distribution’s packaging), and because the SIG has been keeping the toolchain up to date, he
can use current versions of the standards (such as C17, C++20) instead of being restricted to
C11 and C++14.
Debugging/profiling tools provided by the SIG help detect and fix bugs in the app being
developed.

2 Advanced app/game developer

A developer wants to build an app/game that runs on OpenHarmony. This developer has
been developing code for various systems for years if not decades. He is used to his usual
work environment (e.g. vim, emacs) and doesn’t want to learn/use a new IDE instead of the
tools he is already productive with. Thanks to the work of the SIG, the components are not
tied to any particular IDE and can be installed individually, and can fit the experienced
developer’s workflow instead of forcing him to start over.

3 OpenHarmony developer

A developer working on OpenHarmony itself benefits from the same effects as the App
developers, and more: While developing a new feature stressing the compiler, he runs into a
compiler bug (e.g. “Internal Compiler Error”). He can turn to the SIG and get people
familiar with the toolchains to look at the problem and identify a fix or workaround, and get
help obtaining the information a good upstream bug report will want (such as a fully
reduced test case).
Debugging/profiling tools provided by the SIG help detect and fix bugs in OpenHarmony.

3.2 Notes/Constraints/Caveats
N/A

3.3 Risks and Mitigations
Risk: The SIG makes a decision that later turns out to have been a bad choice (e.g. switching to a
compiler that is later abandoned upstream – highly unlikely, but possible)

Mitigation: The SIG’s decision is revised and OpenHarmony migrates to a better tool.

4. Design Details
When investigating a tool, the Tools and toolchain SIG has to keep the following criteria in mind:

1. Tool must be available under a compatible Open Source license

2. Tool should have a clear future

3. Tool should deliver the best performance among comparable tools (or be significantly better in
code quality and/or development speed, to the point that we can be reasonably sure it will
match/outperform comparable tools in the not too distant future)

4. Tool should not be limited to a particular host system

5. Where possible, tools that can be shared across different target systems (hardware architecture
as well as kernel choice) should be preferred over tools that introduce unnecessary differences.
While some toolchain components may need different builds for Linux based OpenHarmony,
Zephyr based OpenHarmony, LiteOS based OpenHarmony and FreeRTOS based
OpenHarmony, they should be built from the same source.

6. While it likely makes sense to provide an easy to use IDE, a developer’s choice should not be
limited to that IDE. Developers using an IDE should be supported just as well as developers
using more traditional tools like text mode editors and commands.

7. Where at all possible, situations like “Board X needs an old kernel that can be built only with an
ancient toolchain, so we use a separate kernel compiler and userland compiler” should be
avoided – preferably by keeping kernel support for relevant devices up to date, if necessary by
backporting patches to support newer toolchains to kernels that are still relevant.

8. Code reuse should be maximized, and porting/rework efforts should be minimized.

4.1 Graduation Criteria
N/A

4.2 Upgrade/Downgrade Strategy
The SIG should upgrade toolchains in a timely manner to keep state of the art performance and
language support.

Toolchain upgrade cadence should generally follow upstream toolchains as well as major
OpenHarmony releases, with the possibility to skip a component release if they happen too frequently
(e.g. LLVM major releases usually follow a 6 month cadence, major gcc releases are usually at least a
year apart).

Downgrades should never be necessary.

5. Implementation History
N/A

6. Drawbacks
N/A

7. Alternatives
The alternative is not making our own toolchain choices, instead following what a related project (e.g.
OpenEmbedded/Yocto/Poky) does without modifications.

8. Infrastructure Needed
N/A

9. References
N/A

	1. Summary
	2. Motivation
	2.1 Goals
	2.2 Non-Goals

	3. Proposal
	3.1 User Stories
	1 Typical app/game developer
	2 Advanced app/game developer
	3 OpenHarmony developer

	3.2 Notes/Constraints/Caveats
	3.3 Risks and Mitigations

	4. Design Details
	4.1 Graduation Criteria
	4.2 Upgrade/Downgrade Strategy

	5. Implementation History
	6. Drawbacks
	7. Alternatives
	8. Infrastructure Needed
	9. References

